
Interfacing
Sepasoft Batch and Procedure Module

with PLCs



Version History

Version
Number

Revision
Date

Revision Description Change
By

Additional
Notes

0.1 01/09/2023 Draft Tom Hechtman

0.2 03/08/2023 Peer review update Tom Hechtman

0.3 03/29/2023 Added Ignition UDT information Tom Hechtman

Version: 0.3 2 of 18
Date: 03/29/2023



This document provides an overview of interfacing the Sepasoft Batch & Procedure module with
PLCs. The ISA-88 standard defined this interface at a high level, which the Sepasoft Batch &
Procedure module follows. Rockwell Automation has extended this interface in their
ControlLogix processors beyond the ISA-88 standard, and this document will discuss what is
required in the ControlLogix processor to support interfacing to the Sepasoft Batch & Procedure
module.

The basic interface used to pass data back and forth between a batch engine (in this case, the
Sepasoft Batch & Procedure module) and a PLC is known as PLI (Phase Logic Interface). This
is the default method unless the PLC supports an alternate method and it is selected to be
used.

It is important to understand the nomenclature and concepts that are defined in the ISA-88
standard. Processes are broken down into granular tasks that are generically called phases. On
the batch engine side, these are technically called Batch Phases, and on the PLC side, they are
Equipment Phases.

There is a one-to-one mapping of these phases. For example, if there is an Add H2O batch
phase defined in the batch engine, then there is a matching Add H2O equipment phase
implemented in the PLC. When implementing an equipment phase in a PLC where extended
functionality is not supported or selected to be used, standard logic is used to handle the
execution of equipment phases.

The matching batch phase and equipment phase communicate using tags. The structure and
definition of these tags are based on PLI. Many default parameters are defined in the ISA-88
standard, while others are included by Sepasoft for common helpful functionality. The user
(typically the engineer) can add additional parameters specific to the phase. For example, a Mix
Time parameter can be added to specify the duration of the mixing step.

The Sepasoft Batch & Procedure module will automatically create tags in the Ignition platform
for the appropriate parameters defined for a batch phase. These tags can be mapped to OPC
devices or Ignition reference tags that are passed to the PLC. The primary parameters, and
associated tags, that control the execution and monitoring of equipment phases are the
Command, Command_Number, State, and State_Number. The Command will have string
values, such as Start and Stop, that are human-readable. The Command_Number will have a
numeric value that is easier to handle in PLC logic.

There are several scenarios, and the following represents just the basic communication
between the batch phase and the equipment phase during the execution of a batch recipe:

● System and user-defined parameter values defined in the recipe will be written to the
tags by the batch engine. The PLC can read these values and are typically used in the
equipment phase logic.

● The batch engine will set the Command to START and the Command_Number to 1.

Version: 0.3 3 of 18
Date: 03/29/2023



● The batch engine will wait for the State to become Running. This is done when
State_Number is set to 2 by the PLC.

● The Command will be set back to None, and the Command_Number set to 0.
● When the PLC has completed the phase, it will set the State_Number to 3 (Complete).
● The batch engine will set the Command to RESET and Command_Number to 7.
● The batch engine will wait until the PLC sets the State_Number to 1 (Idle).
● The phase is deactivated, and the batch continues with the next step.

Figure 1: Batch Phase and Equipment Phase relationship

Version: 0.3 4 of 18
Date: 03/29/2023



Commands and States
Because PLCs are better at detecting and setting numbers compared to text, the following
integer values are used by the PLC to detect commands and set the states.

Command Name Command Number

NONE 0

START 1

PAUSE 2

RESUME 3

HOLD 4

RESTART 5

STOP 6

RESET 7

ABORT 8
Table 1: Commands

State Name State Number

IDLE 1

RUNNING 2

COMPLETE 3

RESTARTING 4

RESETTING 5

PAUSING 6

PAUSED 7

HOLDING 8

HELD 9

STOPPING 10

STOPPED 11

ABORTING 12

ABORTED 13
Table 2: States

Version: 0.3 5 of 18
Date: 03/29/2023



State Diagram
The following diagram shows the appropriate commands for all of the states. The states are
shown in boxes, and the commands are on the lines between the states. The appropriate
command depends on the current state. For example, in Idle (green box on the left), the only
appropriate command is Start which will change the state to Running.

Figure 2: State diagram

Version: 0.3 6 of 18
Date: 03/29/2023



Current
State

Command New
Final
StateStart Stop Hold Restart Abort Reset Pause Resume

Idle Running

Running Stopping Holding Aborting Pausing Complete

Complete Resetting

Pausing Stopping Holding Aborting Paused

Paused Stopping Holding Aborting Running

Holding Stopping Restarting Aborting Held

Held Stopping Aborting

Restarting Stopping Holding Aborting Running

Stopping Aborting Stopped

Stopped Aborting Resetting

Aborting Aborted

Aborted Resetting

Resetting Idle

Table 3: Command and state transition table

In the event that communications are lost or a restart of the batch engine, the batch engine will
adapt to the current state read from the PLC. In the scenario that communications are lost
between the two and the PLC continues the phase to completion, the following will occur when
communications are reestablished:

1. For safety reasons, when the batch engine starts, all running batches are HELD
2. The batch is RESTARTED by the user or from a script
3. Each phase state is read from the PLC
4. If the state is:

a. RUNNING, then the phase will continue to run
b. COMPLETE, then the phase will be considered complete, and a RESET

command will be issued
c. HELD or HOLDING, then the phase will remain held until a RESTART command

is issued by the user or scripting
d. PAUSED or PAUSING, then the phase will remain paused until a RESUME

command is issued by the user or scripting
e. STOPPED or STOPPING, then the phase will remain stopped until a RESET

command is issued by the user or scripting
f. ABORTED or ABORTING, then the phase will remain aborted until a RESET

command is issued by the user or scripting

Version: 0.3 7 of 18
Date: 03/29/2023



Ignition UDTs
On the Sepasoft Batch and Procedure module end, Phases are managed using the Phase
Manager component or by using scripting. When the Exposed option is set to True as shown in
figure 3, a UDT (User Defined Type) for the Agitate phase is automatically created in Ignition.
The UDT will include a member for each system and user-defined parameter. The Tag Type
setting, as shown in figure 4, will determine the type of UDT member that can be one of the
following.

● Memory - simple tags that do not poll or update their values. These can be bound to in
Ignition Perspective views, access in scripting, etc.

● OPC - tags that are linked to field devices (typically PLCs) through an OPC server.
● Reference - tags that refer to other existing tags. This type can be used for linking to

MQTT tags.

Figure 3: Batch and Procedure phase with the Expose option selected.

Version: 0.3 8 of 18
Date: 03/29/2023



The SP_Duration_Minutes duration parameter is set to OPC tag type and a Data Type of
Integer, as shown in figure 4. Note that many PLC vendors do not support spaces in the tag
names, and for this reason, underscores should be used instead.

Figure 4: Batch parameter setting, including the tag type.

Version: 0.3 9 of 18
Date: 03/29/2023



When the phase configuration is saved, the Agitate UDT will be automatically created in the
MES tag provider. Refer to Figure 5 and note that the SP_Duration_Minutes member of the
UDT has a lock next to the name. This is because the parameter Value Source is set to Recipe.
This means the value can only be set in the master recipe and not changed thereafter. If the
Value Source is set to Recipe and Execution, the lock will not appear, and the value can be
changed during execution originating from within the batch engine or PLC.

Figure 5: Tag Browser in the Ignition Designer showing the Agitate UDT

Version: 0.3 10 of 18
Date: 03/29/2023



The UDT can be edited to assign the OPC item paths or reference tag paths. Both can be
parameterized to allow dynamic paths based on the unit name or other UDT parameter values.
As shown in figure 6, the {Unit} portion of the OPC Item Path will be replaced with the unit
name configured in the Batch and Procedure module for all instances of the UDT.

When scaling to multiple units that support the same phases, the use of parameterized OPC
Item Paths will eliminate manually mapping them. This structure should be used for greenfield
implementations. For an existing implementation that does not have a good structure, manually
assigning the OPC Item Paths in the instance must be done.

Figure 6: UDT Editor in the Ignition Designer showing an OPC Item Path

Version: 0.3 11 of 18
Date: 03/29/2023



Once the UDT is configured, an instance of it will be created for each unit that is configured for
the associated phase. Note in figure 7 that the {Unit} UDT parameter of OPC Item Path has
been replaced with Test C.

Figure 7: UDT Editor in the Ignition Designer showing an OPC Item Path

Version: 0.3 12 of 18
Date: 03/29/2023



Handshaking
The batch engine generates a new sequential handshake value every second that can be used
to verify communications between the batch engine and the PLC. Referring to Figure 8, if the
PLC doesn’t detect the Handshake_Value tag value changing every second, it can respond
appropriately to the loss of communications to maintain safety. In the batch engine, the
Handshake_Valid parameter or tag can be used to handle lost communications.

Figure 8: Handshake relationship between batch engine and PLC

Version: 0.3 13 of 18
Date: 03/29/2023



ControlLogix Processors
ControlLogix processors from Rockwell Automation support extended equipment phase
functionality by enabling the CIP Phase Manager. This is optional, and if it is not enabled, the
functionality described above can be used. If it is being used, phase instructions and separate
program logic files are used for each state. Going back to our Add H2O example, when a phase
transitions to the Running state, a program file contains logic to control the valves, pumps,
monitor the amount added, handle safety, and handle exceptions. There is a separate program
file for the Resetting state that can handle items like zeroing the flow meter, etc.

Because the CIP Phase Manager doesn’t use tags, there is a program file specific to handling
the PLI interface. This will need logic to monitor the Command_Number tag and execute a PLC
instruction against the equipment phase. For example, when the Command_Number = 1, it
executes the Phase Start command. And when the Running bit on the Equipment Phase is
detected, it writes 2 into the State_Number tag.

PLI Logic
The following diagram shows an example of a Unit (MashKettle2) folder followed by a
phase folder (MK_Phase) which contains all the equipment phases with all the state’s
subroutines. All the logic, conditions, and commands will be programmed under the
“Running” subroutine.

Figure 9: Phase routine structure in ControlLogix logical organizer

Figure 10 shows an example of an equipment phase’s options and configurations

Version: 0.3 14 of 18
Date: 03/29/2023



Figure 10: Phase routine structure in ControlLogix logical organizer

Version: 0.3 15 of 18
Date: 03/29/2023



Command Control Logic
Figure 11 shows an example of equipment phase command logic to interface the
command value received from the batch engine and execute the appropriate PLC
instruction. Command _Number holds the command value from the batch engine as an
integer value and executes the appropriate command on the equipment phase via the
“PCMD” PLC instruction.

Figure 11: ControlLogix command logic

Version: 0.3 16 of 18
Date: 03/29/2023



State Control Logic
Figure 12 shows an example of equipment phase state logic to interface echoing the
state from the PLC to the batch engine. Equipment phase tags in the PLC represent the
state of a phase as a boolean value and then set the corresponding state number tag
(State_Number) as an integer used by the batch engine. This is accomplished with the
“MOV” PLC instruction.

Figure 12: ControlLogix state logic

Version: 0.3 17 of 18
Date: 03/29/2023



Batch Message Control Logic
Figure 13 shows an example of equipment phase message logic from the PLC to the Batch
engine. When the “TimerMonitor.Out_Reached” tag activates, it will modify the “Message” tag of
the batch engine, which is a string value. This modification of string value will initiate a Batch
message on the HMI side if the step is in the “Running” state.
Then if the “TimerMonitor.Out_Reached” tag deactivates or the “Message_Ack_Confirm” tag
from the Batch engine activates, then the “Null” value will be moved to the “Message” string tag,
which clears the Batch message on the batch engine side.

Figure 13: PLC-generated message logic

Version: 0.3 18 of 18
Date: 03/29/2023


